$crystal = 16000000
$baud = 38400 'this loader uses serial com
$regfile = "m2560def.dat"
Const Loaderchip = 2560
#if Loaderchip = 2560 ' Mega2560
$loader = &H1FC00 ' 1024 words
Const Maxwordbit = 7 'Z7 is maximum bit '
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0
#endif
Const Maxword =(2 ^ Maxwordbit) * 2 '128
Const Maxwordshift = Maxwordbit + 1
Const Cdebug = 0 ' leave this to 0
#if Cdebug
Print Maxword
Print Maxwordshift
#endif
'Dim the used variables
Dim Bstatus As Byte , Bretries As Byte , Bblock As Byte , Bblocklocal As Byte
Dim Bcsum1 As Byte , Bcsum2 As Byte , Buf(128) As Byte , Csum As Byte
Dim J As Byte , Spmcrval As Byte ' self program command byte value
Dim Z As Long 'this is the Z pointer word
Dim Vl As Byte , Vh As Byte ' these bytes are used for the data values
Dim Wrd As Word , Page As Word 'these vars contain the page and word address
Dim Bkind As Byte , Bstarted As Byte
Disable Interrupts 'we do not use ints
'some constants used in serial com
Const Nak = &H15
Const Ack = &H06
Const Can = &H18
'we use some leds as indication in this sample , you might want to remove it
Config Pinb.2 = Output
Portb.2 = 1 'the stk200 has inverted logic for the leds
Config Pinb.3 = Output
Portb.3 = 1
$timeout = 400000 'we use a timeout
Bretries = 5 'we try 5 times
Testfor123:
#if Cdebug
Print "Try " ; Bretries
Print "Wait"
#endif
Bstatus = Waitkey() 'wait for the loader to send a byte
#if Cdebug
Print "Got "
#endif
Print Chr(bstatus);
If Bstatus = 123 Then 'did we received value 123 ?
Bkind = 0 'normal flash loader
Goto Loader
Elseif Bstatus = 124 Then ' EEPROM
Bkind = 1 ' EEPROM loader
Goto Loader
Elseif Bstatus <> 0 Then
Decr Bretries
If Bretries <> 0 Then Goto Testfor123 'we test again
End If
For J = 1 To 10 'this is a simple indication that we start the normal reset vector
Toggle Portb.2 : Waitms 100
Next
#if Cdebug
Print "RESET"
#endif
Goto _reset 'goto the normal reset vector at address 0
'this is the loader routine. It is a Xmodem-checksum reception routine
Loader:
#if Cdebug
Print "Clear buffer"
#endif
Do
Bstatus = Waitkey()
Loop Until Bstatus = 0
For J = 1 To 3 'this is a simple indication that we start the normal reset vector
Toggle Portb.2 : Waitms 50
Next
If Bkind = 0 Then
Spmcrval = 3 : Gosub Do_spm ' erase the first page
Spmcrval = 17 : Gosub Do_spm ' re-enable page
End If
Bretries = 10 'number of retries
Do
Bstarted = 0 ' we were not started yet
Csum = 0 'checksum is 0 when we start
Print Chr(nak); ' firt time send a nack
Do
Bstatus = Waitkey() 'wait for statuse byte
Select Case Bstatus
Case 1: ' start of heading, PC is ready to send
Incr Bblocklocal 'increase local block count
Csum = 1 'checksum is 1
Bblock = Waitkey() : Csum = Csum + Bblock 'get block
Bcsum1 = Waitkey() : Csum = Csum + Bcsum1 'get checksum first byte
For J = 1 To 128 'get 128 bytes
Buf(j) = Waitkey() : Csum = Csum + Buf(j)
Next
Bcsum2 = Waitkey() 'get second checksum byte
If Bblocklocal = Bblock Then 'are the blocks the same?
If Bcsum2 = Csum Then 'is the checksum the same?
Gosub Writepage 'yes go write the page
Print Chr(ack); 'acknowledge
Else 'no match so send nak
Print Chr(nak);
End If
Else
Print Chr(nak); 'blocks do not match
End If
Case 4: ' end of transmission , file is transmitted
If Wrd > 0 And Bkind = 0 Then 'if there was something left in the page
Wrd = 0 'Z pointer needs wrd to be 0
Spmcrval = 5 : Gosub Do_spm 'write page
Spmcrval = 17 : Gosub Do_spm ' re-enable page
End If
' Waitms 100 ' OPTIONAL REMARK THIS IF THE DTR SIGNAL ARRIVES TO EARLY
Print Chr(ack); ' send ack and ready
Portb.3 = 0 ' simple indication that we are finished and ok
Waitms 20
Goto _reset ' start new program
Case &H18: ' PC aborts transmission
Goto _reset ' ready
Case 123 : Exit Do 'was probably still in the buffer
Case 124 : Exit Do
Case Else
Exit Do ' no valid data
End Select
Loop
If Bretries > 0 Then 'attempte left?
Waitms 1000
Decr Bretries 'decrease attempts
Else
Goto _reset 'reset chip
End If
Loop
'write one or more pages
Writepage:
If Bkind = 0 Then
For J = 1 To 128 Step 2 'we write 2 bytes into a page
Vl = Buf(j) : Vh = Buf(j + 1) 'get Low and High bytes
lds r0, {vl} 'store them into r0 and r1 registers
lds r1, {vh}
Spmcrval = 1 : Gosub Do_spm 'write value into page at word address
Wrd = Wrd + 2 ' word address increases with 2 because LS bit of Z is not used
If Wrd = Maxword Then ' page is full
Wrd = 0 'Z pointer needs wrd to be 0
Spmcrval = 5 : Gosub Do_spm 'write page
Spmcrval = 17 : Gosub Do_spm ' re-enable page
Page = Page + 1 'next page
Spmcrval = 3 : Gosub Do_spm ' erase next page
Spmcrval = 17 : Gosub Do_spm ' re-enable page
End If
Next
Else 'eeprom
For J = 1 To 128
Writeeeprom Buf(j) , Wrd
Wrd = Wrd + 1
Next
End If
Toggle Portb.2 : Waitms 10 : Toggle Portb.2 'indication that we write
Return
Do_spm:
Bitwait Spmcsr.0 , Reset ' check for previous SPM complete
Bitwait Eecr.1 , Reset 'wait for eeprom
Z = Page 'make equal to page
Shift Z , Left , Maxwordshift 'shift to proper place
Z = Z + Wrd 'add word
lds r30,{Z}
lds r31,{Z+1}
#if _romsize > 65536
lds r24,{Z+2}
sts rampz,r24 ' we need to set rampz also for the M128
#endif
Spmcsr = Spmcrval 'assign register
spm 'this is an asm instruction
nop
nop
Return